Scientific Reports (2024).
Individual-level assessment of health and well-being permits analysis of community well-being and health risk evaluations across several dimensions of health. It also enables comparison and rankings of reported health and well-being for large geographical areas such as states, metropolitan areas, and counties. However, there is large variation in reported well-being within such large spatial units underscoring the importance of analyzing well-being at more granular levels, such as ZIP codes. In this paper, we model well-being data to generate ZIP code tabulation area (ZCTA)-level rankings through spatially informed statistical modeling. We build regression models for individual-level overall well-being index and scores from five subscales (Physical, Financial, Social, Community, Purpose) using individual-level demographic characteristics as predictors while including a ZCTA-level spatial effect using a graph Laplacian. Deployed on data from Massachusetts and Georgia, the model captures demographic effects and yields spatial effect estimates for all ZCTAs (including some without observations), enabling community‑level rankings.