
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Super Learner In Prediction

Eric C. Polley∗ Mark J. van der Laan†

∗Division of Biostatistics, University of California, Berkeley, eric.polley@nih.gov
†University of California - Berkeley, laan@berkeley.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper266

Copyright c©2010 by the authors.



Super Learner In Prediction

Eric C. Polley and Mark J. van der Laan

Abstract

Super learning is a general loss based learning method that has been proposed
and analyzed theoretically in van der Laan et al. (2007). In this article we con-
sider super learning for prediction. The super learner is a prediction method de-
signed to find the optimal combination of a collection of prediction algorithms.
The super learner algorithm finds the combination of algorithms minimizing the
cross-validated risk. The super learner framework is built on the theory of cross-
validation and allows for a general class of prediction algorithms to be considered
for the ensemble. Due to the previously established oracle results for the cross-
validation selector, the super learner has been proven to represent an asymptot-
ically optimal system for learning. In this article we demonstrate the practical
implementation and finite sample performance of super learning in prediction.



1 Introduction

A common task in statistical data analysis is estimator selection for prediction. An outcome Yi is
measured along with a set of covariatesWi and interest is in the regression function E(Y |W ). For a
given regression problem, it is possible to create a set of algorithms all estimating the same function
but with some variety. An algorithm is an estimator that maps a data set of n observations (Wi, Yi),
i = 1, . . . , n, into a prediction function that can be used to map an input W into a predicted value
for Y . The algorithms may differ in the subset of the covariates used, the basis functions, the loss
functions, the searching algorithm, and the range of tuning parameters, among others. We prefer
the more general notion estimator selection instead of model selection, since the formal meaning of
model in the field of statistics is the set of possible probability distributions, while most algorithms
are not indexed by a model choice.

Estimator selection is not limited to selecting only a single estimator. Recent work has demon-
strated that an ensemble of the algorithms in the collection can outperform a single algorithm.
van der Laan et al. [2007] introduced the super learner for estimator selection and proved the
optimality of such an method. The super learner is related to the stacking algorithm introduced
in neural networks context by Wolpert [1992] and adapted to the regression context by Breiman
[1996b]. The stacking algorithm is examined in LeBlanc and Tibshirani [1996] and the relationship
to the model-mix algorithm of Stone [1974] and the predictive sample-reuse method of Geisser
[1975] is discussed.

In this article, we demonstrate how the super learner algorithm, as outlined by van der Laan
et al. [2007] as a general minimum loss based learning method, in the context of prediction can
be implemented, and empirically demonstrate the advantage of such an ensemble method. After a
review of the super learner algorithm, a sequence of simulations is presented to highlight properties
of the super learner, in accordance with the theoretical optimality results of the super learner.
Following the simulations, the super learner is demonstrated on a series of real data sets.

2 Super Learner

In this section the general super learner algorithm for prediction is described along with some of
the specific recommendations for implementation. The details follow van der Laan et al. [2007]
closely, although some of the notation has changed to be consistent with the rest of the article.

Observe the learning data set Xi = (Yi,Wi) , i = 1, . . . , n where Y is the outcome of interest and
W is a p-dimensional set of covariates. The objective is to estimate the function ψ0(W ) = E(Y |W ).
The function can be expressed as the minimizer of the expected loss:

ψ0(W ) = argmin
ψ

E [L(X,ψ(W ))] (1)

where the loss function is often the squared error loss, L2 : (Y − ψ(W ))2. For a given problem, a
library of prediction algorithms can be proposed. A library is simply a collection of algorithms.
The algorithms in the library should come from contextual knowledge and a large set of default
algorithms. We use algorithm in the general sense as any mapping from the data into a predictor.
The algorithms may range from a simple linear regression model to a multi-step algorithm involving
screening covariates, optimizing tuning parameters, and selecting a working model among a large
class of candidate working models. As long as the algorithm takes the observed data and outputs

1

Hosted by The Berkeley Electronic Press



a predicted value we consider it a prediction algorithm. For example, the library may include least
squares regression estimators for a large class of regression working models indexed by subsets of
the covariates, algorithms indexed by set values of the fine-tuning parameters for a collection of
values, algorithms using internal cross-validation to set fine-tuning parameters, algorithms coupled
with screening procedures to reduce the dimension of the covariate vector, and so on. Denote the
library L and the cardinality of L as K(n).

1. Fit each algorithm in L on the entire data set X = {Xi : i = 1, . . . , n} to estimate Ψ̂k(W ), k =
1, . . . ,K(n).

2. Split the data set X into a training and validation sample, according to a V-fold cross-
validation scheme: splits the ordered n observations into V -equal size groups, let the ν-th
group be the validation sample, and the remaining group the training sample, ν = 1, . . . , V .
Define T (ν) to be the νth training data split and V (ν) to be the corresponding validation
data split. T (ν) = X \ V (ν), ν = 1, . . . , V .

3. For the νth fold, fit each algorithm in L on T (ν) and save the predictions on the corresponding
validation data, Ψ̂k,T (ν)(Wi), Xi ∈ V (ν) for ν = 1, . . . , V .

4. Stack the predictions from each algorithm together to create a n by K matrix,

Z =
{
Ψ̂k,T (ν)(WV (ν)), ν = 1, . . . , V & k = 1, . . . ,K

}
, where we used the notation WV (ν) =

(Wi : Xi ∈ V (ν)) for the covariate-vectors of the V (ν)-validation sample.

5. Propose a family of weighted combinations of the candidate estimators indexed by weight-
vector α:

m(z|α) =
K∑
k=1

αkΨ̂k,T (ν)(WV (ν)), αk ≥ 0 ∀k,
K∑
k=1

αk = 1.

6. Determine the α that minimizes the cross-validated risk of the candidate estimator
∑K

k=1 αkΨ̂k

over all allowed α-combinations:

α̂ = argmin
α

n∑
i=1

(Yi −m(zi|α))2.

7. Combine α̂ with Ψ̂k(W ), k = 1, . . . ,K according to the family m(z|α) of weighted combina-
tions to create the final super learner fit:

Ψ̂SL(W ) =

K∑
k=1

α̂kΨ̂k(W )

The super learner theory does not place any restrictions on the family of weighted combinations
used for ensembling the algorithms in the library. The restriction of the parameter space for α to be
the convex combination of the algorithms in the library provides greater stability of the final super
learner prediction. The convex combination is not only empirically motivated, but also supported
by the theory. The oracle results for the super learner require a bounded loss function. Restricting
to the convex combination implies that if each algorithm in the library is bounded, the convex
combination will also be bounded.

2

http://biostats.bepress.com/ucbbiostat/paper266



Also contained within the family of the convex combinations is the possibility of selecting only
one algorithm. The nodes of the convex hull:

Anode = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)},

correspond with selecting the single algorithm from the library that minimizes the V-fold cross-
validated risk. This is the usual cross-validation selector we refer to as the discrete super learner
since it is searching over a finite set for the algorithm weights (α). Although possible for the super
learner to select only a single algorithm from the library, it typically selects a weighted average of
the algorithms together in an ensemble.

Super learner performs asymptotically as well as best possible weighted combination
For convenience, we provide here a short summary of the oracle results established in previous
articles. For detail, we refer to these articles as referred to in van der Laan et al. [2007]. The oracle
result for the cross-validation selector among a family of candidate estimators was established
in van der Laan and Dudoit [2003] for general bounded loss functions: see also van der Vaart
et al. [2006] for unbounded loss functions with tails that are controlled by exponential bounds
and infinite families of candidate estimators, and van der Laan et al. [2007] for its application
to the super learner. This result proves (see above references for the precise statement of these
implications) that, if the number of candidate estimators, K(n), is polynomial in sample size, then
the cross-validation selector is either asymptotically equivalent with the oracle selector (based on
sample of size of training samples), or it achieves the parametric rate log n/n for convergence w.r.t.
d(ψ, ψ0) ≡ E0{L(ψ) − L(ψ0)}. So in most realistic scenarios, in which none of the candidate
estimators achieve the rate of convergence one would have with an a priori correctly specified
parametric model, the cross-validated selected estimator selector performs asymptotically exactly
as well (up till a constant) as the oracle selected estimator. As a consequence, the super learner
will perform asymptotically exactly as well (w.r.t. the loss based dissimilarity) as the best possible
choice for the given data set among the family of weighted combinations of the estimators. In
particular, this proves that, by including all competitors in the library of candidate estimators, the
super learner will asymptotically outperform any of its competitors, even if the set of competitors
is allowed to grow polynomial in sample size. This motivated our naming “super learner” since it
provides a system of combining many estimators into an improved estimator.

3 Examples

To examine the performance of the super learner we start with a series of simulations and then
demonstrate a super learner on a collection of real data sets. The simulations are intended to
illustrate the application of the super learner algorithm and highlight some of the properties.

3

Hosted by The Berkeley Electronic Press



3.1 Simulations

Four different simulations are presented in this section. All four simulations involve a univariate X
drawn from a uniform distribution in [−4,+4]. The outcome follows the function described below:

Sim 1: Y = −2× I(X < −3) + 2.55× I(X > −2)− 2× I(X > 0)

+ 4× I(X > 2)− 1× I(X > 3) + ε

Sim 2: Y = 6 + 0.4X − 0.36X2 + 0.005X3 + ε

Sim 3: Y = 2.83× sin
(π
2
×X

)
+ ε

Sim 4: Y = 4× sin (3π ×X)× I(X > 0) + ε

where I(·) is the usual indicator function and ε is drawn from an independent standard normal dis-
tribution in all simulations. A sample of size 100 will be drawn for each scenario. Figure 1 contains
a scatterplot with a sample from each of the four simulations. The true curve for each simulation is
represented by the solid line. These four simulations were chosen because they represent a diverse
set of true models but all four have the same optimal R2 = 0.80. The R2 is computed as:

R2 = 1−
∑(

Yi − Ŷi
)2

∑
(Yi − ave(Yi))2

(2)

The optimal R2 is the value attained when the true regression function (i.e., true conditional mean)

is used. Knowing the true regression function implies
∑(

Yi − Ŷi
)2

= Var(ε)n = 1n. Hence the

optimal R2 in all four simulations is R2
opt = 1 − 1/Var(Y ) and the variance of Y is set such that

R2
opt = 0.80 in each simulation.
In all four simulations, we start with the same library of prediction algorithms. Table 1 contains

a list of the algorithms in the library. The library of algorithms should ideally be a diverse set. One
common aspect of many prediction algorithms is the need to specify values for tuning parameters.
For example the generalized additive models requires a degree of freedom value for the spline
functions or the neural network requires a size value. The tuning parameters could be selected using
cross-validation or bootstrapping, but the different values of the tuning parameters could also be
considered different prediction algorithms. A library could contain three generalized additive models
with degrees of freedom equal to 2, 3, and 4. The selection of tuning parameters does not need to be
done inside an algorithm, but each fixed value of a tuning parameter can be considered a different
algorithm and the ensembling method can decide how to weight the different algorithms with
unique values of the tuning parameters. When one considers different values of tuning parameters
as unique prediction algorithms in the library it is easy to see how the number of algorithms in the
library can become large. The library for the simulations contains 21 algorithms when considering
different values of tuning parameters. A linear model and a linear model with a quadratic term
are considered. The default random forest algorithm along with a collection of bagging regression
trees with values of the complexity parameter equal to 0.10, 0.01, and 0.00 and a bagging algorithm
adjusting the minimum split parameter to be 5 (with the default complexity parameter of 0.01).
The generalized additive model with degrees of freedom equal to 2, 3, and 4 is added along with the
default gradient boosting model. Neural networks with sizes 2 through 5, the polymars algorithm
and the Bayesian additive regression trees is added. Finally, we consider the loess curve with spans
equal to 0.75, 0.50, 0.25, and 0.10.

4

http://biostats.bepress.com/ucbbiostat/paper266



Simulation 1

X

Y

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−2 0 2

Simulation 2

X

Y
−2

0

2

4

6

8

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

−2 0 2

Simulation 3

X

Y

−4

−2

0

2

4

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2

Simulation 4

X

Y

−4

−2

0

2

4

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 0 2

Figure 1: Scatterplots of the four simulations. The solid line is the true relationship. The points
represent one of the simulation samples of size n = 100.

5

Hosted by The Berkeley Electronic Press



Table 1: Library of prediction algorithms for the simulations and citation for the corresponding R
package.

Algorithm Description Author

glm linear model R Development Core Team [2010]
interaction polynomial linear model R Development Core Team [2010]
randomForest random Forest Liaw and Wiener [2002]

Breiman [2001]
bagging bootstrap aggregation of trees Peters and Hothorn [2009]

Breiman [1996a]
gam generalized additive models Hastie [1992]

Hastie and Tibshirani [1990]
gbm gradient boosting Ridgeway [2007]

Friedman [2001]
nnet neural network Venables and Ripley [2002]
polymars polynomial spline regression Kooperberg [2009]

Friedman [1991]
bart Bayesian additive regression trees Chipman and McCulloch [2009]

Chipman et al. [2010]
loess local polynomial regression Cleveland et al. [1992]

Figure 2 contains the super learner fit on a simulated data set for each scenario. With the
given library the super learner is able to adapt to the underlying structure of the data generating
function. For each algorithm we evaluated the R2 on a test set of size 10,000. To evaluate the
performance of the super learner in comparison to each algorithm in the library, we simulated 100
samples of size 100 and computed the R2 for each fit of the true regression function. The results
are presented in Table 2. In the first simulation, the regression tree based methods perform best.
Bagging complete regression trees (cp = 0) has the largest R2. On the second simulation, the best
algorithm is the quadratic linear regression model (SL.interaction). In both these cases the super
learner is able to adapt to the underlying structure and is able to have an average R2 near the
best. The same trend is exhibited in simulations 3 and 4, the super learner method of combining
algorithms does nearly as well as the individual best algorithm. Since the individual best algorithm
is not known, if a researcher was to select a single algorithm they might do well on some cases,
but the overall performance will be worse than the super learner. For example, an individual who
always uses bagging complete trees (SL.bagging(cp = 0.0)) will do well on the first 3 simulations,
but will perform poorly on the 4th simulation compared to the average performance of the super
learner.

The optimal R2 is the value attained by knowing the true regression function. The optimal
value gives an upper bound on the possible R2 for each algorithm. In the first three simulations
the super learner is able to come close to the optimal value because some of the algorithms in the
library are able to well approximate the truth. But in the fourth simulation the library is not rich
enough to contain a combination of algorithms able to approach the optimal value. The super
learner is able to do as well as the best algorithms in the library but does not attain the optimal
R2.

6

http://biostats.bepress.com/ucbbiostat/paper266



Simulation 1

X

Y

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−2 0 2

Simulation 2

X

Y

−2

0

2

4

6

8

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

−2 0 2

Simulation 3

X

Y

−4

−2

0

2

4

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2

Simulation 4

X

Y

−4

−2

0

2

4

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 0 2

Figure 2: Scatterplots of the four simulations. The solid line is the true relationship. The points
represent one of the simulated datasets of size n = 100. The dashed line is the super learner fit for
the shown dataset.

7

Hosted by The Berkeley Electronic Press



Table 2: Results for all 4 simulations. Average R-squared based on 100 simulations and the
corresponding standard errors.

Algorithm Sim 1 Sim 2 Sim 3 Sim 4
R2 se(R2) R2 se(R2) R2 se(R2) R2 se(R2)

SuperLearner 0.741 0.032 0.754 0.025 0.760 0.025 0.496 0.122
discrete SL 0.729 0.079 0.758 0.029 0.757 0.055 0.509 0.132

SL.glm 0.422 0.012 0.189 0.016 0.107 0.016 −0.018 0.021
SL.interaction 0.428 0.016 0.769 0.011 0.100 0.020 −0.018 0.029
SL.randomForest 0.715 0.021 0.702 0.027 0.724 0.018 0.460 0.109
SL.bagging(0.01) 0.751 0.022 0.722 0.036 0.723 0.018 0.091 0.054
SL.bagging(0.1) 0.635 0.120 0.455 0.195 0.661 0.029 0.020 0.025
SL.bagging(0.0) 0.752 0.021 0.722 0.034 0.727 0.017 0.102 0.060
SL.bagging(ms5) 0.747 0.020 0.727 0.030 0.741 0.016 0.369 0.104
SL.gam(2) 0.489 0.013 0.649 0.026 0.213 0.029 −0.014 0.023
SL.gam(3) 0.535 0.033 0.748 0.024 0.412 0.037 −0.017 0.029
SL.gam(4) 0.586 0.027 0.759 0.020 0.555 0.022 −0.020 0.034
SL.gbm 0.717 0.035 0.694 0.038 0.679 0.022 0.063 0.040
SL.nnet(2) 0.476 0.235 0.591 0.245 0.283 0.285 −0.008 0.030
SL.nnet(3) 0.700 0.096 0.700 0.136 0.652 0.218 0.009 0.035
SL.nnet(4) 0.719 0.077 0.730 0.062 0.738 0.102 0.032 0.052
SL.nnet(5) 0.705 0.079 0.716 0.070 0.731 0.077 0.042 0.060
SL.polymars 0.704 0.033 0.733 0.032 0.745 0.034 0.003 0.040
SL.bart 0.740 0.015 0.737 0.027 0.764 0.014 0.077 0.034
SL.loess(0.75) 0.599 0.023 0.761 0.019 0.487 0.028 −0.023 0.033
SL.loess(0.50) 0.695 0.018 0.754 0.022 0.744 0.029 −0.033 0.038
SL.loess(0.25) 0.729 0.016 0.738 0.025 0.772 0.015 −0.076 0.068
SL.loess(0.1) 0.690 0.044 0.680 0.064 0.699 0.039 0.544 0.118

8

http://biostats.bepress.com/ucbbiostat/paper266



For the fourth simulation example, if the researcher thought that the relationship between X
and Y followed a linear model up to a knot point, and then was a sine curve with an unknown
frequency and amplitude, they could augment the library with proposed prediction algorithms:

sinKnot(X; k, ω) = {β1 + β2X} × I(X < k) (3)

+ {β3 + β4 sin(ωX)} × I(X ≥ k)

for fixed values of the knot k and the frequency ω. For the fourth simulation, we augmented
the library with the regression model above selecting values for the knots in {−2,−1, 0,+1,+2}
and values for the frequency in {π, 2π, 3π, 4π} and all pairwise combinations of the two tuning
parameters. This added 20 algorithms to the library (for a total of 41 algorithms). The results are
presented in table 3. The 20 knot plus sine curve functions are labeled sinKnot(k, ω) in the table.
The algorithm containing the true relationship between X and Y is sinKnot(0, 3π). The super
learner now achieves a performance very close to the optimal R2.

3.2 Data Analysis

To study the super learner in real data examples, we collected a set of publicly available data sets.
Table 4 contains a descriptions of the data sets used for the study. The sample sizes ranged from
200 to 654 observations and the number of covariates ranged from 3 to 18. All 13 data sets have a
continuous outcome and no missing values. The data sets can be found either in public repositories
like the UCI data repository or in textbooks, with the corresponding citation listed in the table.

For the library of prediction algorithms, the applicable algorithms from the univariate simula-
tions along with the algorithms listed in table 5. These algorithms represent a diverse set of basis
functions and should allow the super learner to work well in most real settings. For the comparison
across all data sets, we kept the library of algorithms the same. The super learner may benefit
from including algorithms based on contextual knowledge of the data problem as demonstrated in
the augmented library in simulation 4.

Each data set has a different scale for the outcome. In order to compare the performance of the
prediction algorithms across diverse data sets we used the relative mean squared error where the
denominator is the mean squared error of a linear model:

relMSE(k) =
MSE(k)

MSE(lm)
, k = 1, . . . ,K (4)

The results for the super learner, the discrete super learner, and each individual algorithm can be
found in figure 3. Each point represents the 10-fold cross-validated relative mean squared error for
a data set and the plus sign is the geometric mean of the algorithm across all 13 data sets. The
super learner slightly outperforms the discrete super learner but both outperform any individual
algorithm. With the real data it is unlikely that one single algorithm contains the true relationship
and the benefit of the combination of the algorithms versus the selection of a single algorithm is
demonstrated. The additional estimation of the combination parameters (α) does not appear to
cause an over-fit in terms of the risk assessment. Among the individual library algorithms the
bayesian additive regression trees performs the best, but over-fits on one of the datasets with a
relative mean squared error of almost 3.0. Across various real data examples, the super learner is
able to adapt to the true underlying structure. The super learner also outperforms the discrete

9

Hosted by The Berkeley Electronic Press



Table 3: Simulation results for example 2. Average mean squared error and R-squared based on
100 simulations and the corresponding standard errors.

Algorithm MSE se(MSE) R2 se(R2)

SuperLearner 1.193 0.200 0.759 0.040
discrete SL 1.036 0.035 0.791 0.007

SL.glm 5.040 0.106 −0.017 0.021
SL.interaction 5.057 0.126 −0.021 0.026
SL.randomForest 2.645 0.523 0.466 0.106
SL.bagging(0.01) 4.414 0.351 0.109 0.071
SL.bagging(0.1) 4.734 0.200 0.044 0.040
SL.bagging(0.0) 4.416 0.343 0.109 0.069
SL.bagging(ms5) 2.650 0.543 0.465 0.110
SL.gam(2) 5.033 0.113 −0.016 0.023
SL.gam(3) 5.061 0.131 −0.022 0.027
SL.gam(4) 5.089 0.160 −0.027 0.032
SL.gbm 4.580 0.282 0.075 0.057
SL.nnet(2) 5.067 0.447 −0.023 0.090
SL.nnet(3) 4.922 0.627 0.006 0.127
SL.nnet(4) 4.769 0.528 0.037 0.107
SL.nnet(5) 4.816 0.928 0.028 0.187
SL.polymars 4.996 0.309 −0.008 0.062
SL.bart 4.531 0.198 0.085 0.040
SL.loess(0.75) 5.124 0.186 −0.034 0.037
SL.loess(0.50) 5.206 0.238 −0.051 0.048
SL.loess(0.25) 5.661 0.562 −0.143 0.114
SL.loess(0.1) 2.413 0.823 0.513 0.166
SL.sinKnot(-2, 3.14) 5.097 0.122 −0.029 0.025
SL.sinKnot(-1, 3.14) 5.119 0.135 −0.033 0.027
SL.sinKnot(0, 3.14) 5.151 0.151 −0.040 0.031
SL.sinKnot(1, 3.14) 5.109 0.193 −0.031 0.039
SL.sinKnot(2, 3.14) 5.221 0.217 −0.054 0.044
SL.sinKnot(-2, 6.28) 5.146 0.179 −0.039 0.036
SL.sinKnot(-1, 6.28) 5.169 0.195 −0.043 0.039
SL.sinKnot(0, 6.28) 5.217 0.246 −0.053 0.050
SL.sinKnot(1, 6.28) 5.161 0.228 −0.042 0.046
SL.sinKnot(2, 6.28) 5.268 0.271 −0.063 0.055
SL.sinKnot(-2, 9.42) 2.405 0.064 0.515 0.013
SL.sinKnot(-1, 9.42) 1.854 0.058 0.626 0.012
SL.sinKnot(0, 9.42) 1.036 0.035 0.791 0.007
SL.sinKnot(1, 9.42) 2.054 0.090 0.585 0.018
SL.sinKnot(2, 9.42) 3.163 0.163 0.362 0.033
SL.sinKnot(-2, 12.57) 5.110 0.129 −0.031 0.026
SL.sinKnot(-1, 12.57) 5.136 0.145 −0.037 0.029
SL.sinKnot(0, 12.57) 5.173 0.160 −0.044 0.032
SL.sinKnot(1, 12.57) 5.116 0.179 −0.033 0.036
SL.sinKnot(2, 12.57) 5.223 0.221 −0.054 0.04510

http://biostats.bepress.com/ucbbiostat/paper266



Table 4: Description of data sets. n is the sample size and p is the number of covariates. All
examples have a continuous outcome.

Name n p Source

ais 202 10 Cook and Weisberg [1994]
diamond 308 17 Chu [2001]
cps78 550 18 Berndt [1991]
cps85 534 17 Berndt [1991]
cpu 209 6 Kibler et al. [1989]
FEV 654 4 Rosner [1999]
Pima 392 7 Newman et al. [1998]
laheart 200 10 Afifi and Azen [1979]
mussels 201 3 Cook [1998]
enroll 258 6 Liu and Stengos [1999]
fat 252 14 Penrose et al. [1985]
diabetes 366 15 Harrell [2001]
house 506 13 Newman et al. [1998]

super learner which demonstrates the advantage of combining algorithms over selecting a single
algorithm.

Table 5: Additional prediction algorithms in the library for the real data examples to be combined
with the algorithms from Table 1.

Algorithm Description Author

bayesglm Bayesian linear model Gelman et al. [2010]
Gelman et al. [2009]

glmnet Elastic net Friedman et al. [2010b]
Friedman et al. [2010a]

DSA DSA algorithm Neugebauer and Bullard [2009]
Sinisi and van der Laan [2004]

step Stepwise regression Venables and Ripley [2002]
ridge Ridge regression Venables and Ripley [2002]
svm Support vector machine Dimitriadou et al. [2009]

Chang and Lin [2001]

3.3 Array Data

A common application of prediction modeling in biostatistics is with microarray data. The super
learner framework easily extends to this setting. Microarray data is often high dimensional, i.e.
the number of covariates is larger than the sample size. The library of prediction algorithms needs
to incorporate this information, but the parametric model used to combine the algorithms can be

11

Hosted by The Berkeley Electronic Press



Figure 3: 10-fold cross-validated relative mean squared error compared to glm across 13 real
datasets. Sorted by the geometric mean, denoted with the plus (+) sign.

Relative MSE

M
et

ho
d

svm

gbm(1)

randomForest

gbm(2)

ridge

step

DSA

glmnet(.25)

glmnet(.50)

glmnet(1)

glmnet(.75)

bayesglm

glm

step.interaction

polymars

gam(5)

gam

gam(4)

gam(3)

bart

discreteSL

SuperLearner

●●●●●●● ●● ● ●●●

●●●●● ●● ●● ●●●●

●●●●● ●● ●●● ●●●

●●●●● ●●●● ●●●●

● ●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●● ●● ●● ● ●●● ●●●

●● ●● ●●● ●●● ●●●

●● ●●● ●● ●●● ● ●●

●●●●● ●● ●●● ●●●

●● ●●● ●● ●●● ● ●●

●● ●●● ●● ●●● ● ●●

●● ●●● ●● ●●●● ●●

●● ●●● ●● ●●● ●●●

●● ●●● ●● ●●● ●●●

0.5 1 2 4 6 8 10 1214

12

http://biostats.bepress.com/ucbbiostat/paper266



chosen the same.
The super learner in a microarray example is demonstrated using two publicly available data

sets. The breast cancer data from van’t Veer et al. [2002] and the prostate cancer array data from
Singh et al. [2002]. The breast cancer study was conducted to develop a gene expression based
predictor for 5 year distant metastases. The outcome in this case is a binary indicator that patient
had a distant metastases within 5 years after initial therapy. In addition to the expression data, six
clinical variables were attained. The clinical information is age, tumor grade, tumor size, estrogen
receptor status, progesterone receptor status and angioinvasion. The array data contains 4348
genes after the unsupervised screening steps outlined in the original article. We used the entire
sample of 97 individuals (combining the training and validation samples from the original article)
to fit the super learner.

The prostate cancer study was conducted to develop a gene expression based predictor of a
cancerous tumor. 102 tissue samples were collected with 52 from cancer tissue and 50 from non-
cancer tissue. The data set contains 6033 genes after the pre-processing steps, but no clinical
variables were available in the data set.

One aspect of high dimensional data analysis is that it is often beneficial to screen the variables
before running the prediction algorithms. With the super learner framework, screening of variables
can be either supervised or unsupervised since the screening step will be part of the cross-validation
step. Screening algorithms can be coupled with prediction algorithms to create new algorithms in
the library. For example, we may consider k-nearest neighbors using all features and on the subset
of only clinical variables. These two algorithms can be considered unique algorithms in the super
learner library. Another screening algorithm we consider is to test the pairwise correlations of
each variable with the outcome and rank the variables by the corresponding p-value. With the
ranked list of variables, we consider the screening cutoffs as: variables with a p-value less than 0.1,
variables with a p-value less than 0.01, variables in the bottom 20, and variables in the bottom
50. An additional screening algorithm is to run the glmnet algorithm and select the variables with
non-zero coefficients.

The results for the breast cancer data can be found in table 6. The algorithms in the library are
k-nearest neighbors with k = {10, 20, 30, 40}, elastic net with α = {1.0, 0.75, 0.50, 0.25}, random
forests, bagging, bart, and an algorithm that uses the mean value of the outcome as the predicted
probability. We coupled these algorithms with the screening algorithms to produce the full list
of 38 algorithms. Within the library of algorithms, the best algorithm in terms of minimum risk
estimate is the random forest algorithm using only the clinical variables (MSE = 0.198). As we
observed in the previous examples, the super learner is able to attain a risk comparable to the best
algorithm (MSE = 0.194).

The results from the prostate cancer data can be found in table 7. The library of algorithms
is similar to that used in the breast cancer example minus the clinical variable screening. In this
example, the elastic net algorithm performs best among the library algorithms. The mean squared
error for the elastic net fit with fine-tuning parameter alpha equal to 0.50, and fit on the entire data
set, was 0.071. The super learner outperforms even the best algorithm in the library here with a
mean squared error of 0.067.

Standard errors of the cross-validated risk are based on the results of Theorem 3 in Dudoit and
van der Laan [2005]. The equation for the estimator of the variance of the cross-validated risk of

13

Hosted by The Berkeley Electronic Press



Table 6: 20-fold cross-validated mean squared error for each algorithm and the standard error for
the breast cancer study.

Algorithm Subset Risk SE

Super Learner – 0.194 0.0168
Discrete SL – 0.238 0.0239

SL.knn(10) All 0.249 0.0196
SL.knn(10) Clinical 0.239 0.0188
SL.knn(10) cor(p < 0.1) 0.262 0.0232
SL.knn(10) cor(p < 0.01) 0.224 0.0205
SL.knn(10) glmnet 0.219 0.0277
SL.knn(20) All 0.242 0.0129
SL.knn(20) Clinical 0.236 0.0123
SL.knn(20) cor(p < 0.1) 0.233 0.0168
SL.knn(20) cor(p < 0.01) 0.206 0.0176
SL.knn(20) glmnet 0.217 0.0257
SL.knn(30) All 0.239 0.0128
SL.knn(30) Clinical 0.236 0.0119
SL.knn(30) cor(p < 0.1) 0.232 0.0139
SL.knn(30) cor(p < 0.01) 0.215 0.0165
SL.knn(30) glmnet 0.210 0.0231
SL.knn(40) All 0.240 0.0111
SL.knn(40) Clinical 0.238 0.0105
SL.knn(40) cor(p < 0.1) 0.236 0.0118
SL.knn(40) cor(p < 0.01) 0.219 0.0151
SL.knn(40) glmnet 0.211 0.0208
SL.glmnet(1.0) cor(Rank = 50) 0.229 0.0285
SL.glmnet(1.0) cor(Rank = 20) 0.208 0.0260
SL.glmnet(0.75) cor(Rank = 50) 0.221 0.0269
SL.glmnet(0.75) cor(Rank = 20) 0.209 0.0258
SL.glmnet(0.50) cor(Rank = 50) 0.226 0.0269
SL.glmnet(0.50) cor(Rank = 20) 0.211 0.0256
SL.glmnet(0.25) cor(Rank = 50) 0.230 0.0266
SL.glmnet(0.25) cor(Rank = 20) 0.216 0.0252
SL.randomForest Clinical 0.198 0.0186
SL.randomForest cor(p < 0.01) 0.204 0.0179
SL.randomForest glmnet 0.220 0.0245
SL.bagging Clinical 0.207 0.0160
SL.bagging cor(p < 0.01) 0.205 0.0184
SL.bagging glmnet 0.206 0.0219
SL.bart Clinical 0.202 0.0183
SL.bart cor(p < 0.01) 0.210 0.0207
SL.bart glmnet 0.220 0.0275
SL.mean All 0.224 0.1016

14

http://biostats.bepress.com/ucbbiostat/paper266



Table 7: 20-fold cross-validated mean squared error for each algorithm and the standard error for
the prostate cancer study.

Algorithm subset Risk SE

SuperLearner – 0.067 0.018
Discrete SL – 0.076 0.019

SL.knn(10) All 0.149 0.017
SL.knn(10) cor (p < 0.1) 0.131 0.018
SL.knn(10) cor (p < 0.01) 0.120 0.020
SL.knn(10) glmnet 0.066 0.019
SL.knn(20) All 0.167 0.013
SL.knn(20) cor (p < 0.1) 0.159 0.015
SL.knn(20) cor (p < 0.01) 0.134 0.017
SL.knn(20) glmnet 0.073 0.018
SL.knn(30) All 0.185 0.010
SL.knn(30) cor (p < 0.1) 0.180 0.011
SL.knn(30) cor (p < 0.01) 0.153 0.014
SL.knn(30) glmnet 0.076 0.016
SL.knn(40) All 0.201 0.008
SL.knn(40) cor (p < 0.1) 0.199 0.009
SL.knn(40) cor (p < 0.01) 0.175 0.011
SL.knn(40) glmnet 0.085 0.014
SL.glmnet(α = 1.0) All 0.080 0.019
SL.glmnet(α = 1.0) cor (p < 0.1) 0.076 0.018
SL.glmnet(α = 1.0) cor (Rank = 50) 0.091 0.021
SL.glmnet(α = 0.75) All 0.074 0.018
SL.glmnet(α = 0.75) cor (p < 0.1) 0.072 0.017
SL.glmnet(α = 0.75) cor (Rank = 50) 0.086 0.021
SL.glmnet(α = 0.50) All 0.071 0.017
SL.glmnet(α = 0.50) cor (p < 0.1) 0.069 0.017
SL.glmnet(α = 0.50) cor (Rank = 50) 0.084 0.019
SL.randomForest cor (p < 0.01) 0.101 0.014
SL.randomForest cor (Rank = 50) 0.082 0.016
SL.randomForest glmnet 0.086 0.016
SL.bart cor (p < 0.01) 0.117 0.016
SL.bart glmnet 0.084 0.017
SL.bart cor (Rank = 50) 0.085 0.018
SL.polymars cor (Rank = 50) 0.081 0.022
SL.polymars cor (Rank = 100) 0.093 0.024

15

Hosted by The Berkeley Electronic Press



an estimator Ψ̂ as an estimator of the true risk is:

σ2n =
1

n

∑{(
Yi − Ψ̂T (i)(Wi)

)2 − θ̄n
}2

(5)

where θ̄n is the cross-validated risk estimate of the mean squared error. In words, the sample
standard deviation of the cross-validation values of the squared error are used to calculate the
standard error of the V-fold cross-validated mean squared error estimates.

4 Discussion

Beyond the asymptotic oracle performance of the super learner, our evaluation of the practical per-
formance of the super learner shows that the super learner is also an adaptive and robust estimator
selection procedure for small samples. Combining estimators with the weights (i.e. positive and
summing up till 1) based on minimizing cross-validated risk appears to control for over-fitting of
the final ensemble fit generated by the super learning algorithm, even when using a large collection
of candidate estimators. The above examples demonstrate that the super learner framework allows
a researcher to try many prediction algorithms, and many a priori guessed models about the true
regression model for a given problem, knowing that the final combined super learner fit will either
be the best fit or near the best fit.

Combining estimators with the convex combination algorithm proposed here appears to also
improve on the usual cross-validation selector (i.e. discrete super learner). Selection of a single
algorithm based on V-fold cross-validated risk minimization may be unstable with the small sample
sizes of the data sets presented here, while the super learner can average a few of the best algorithms
in the library to give a more stable estimator compared to the discrete super learner.

References

A. Afifi and S. Azen. Statistical Analysis: A Computer Oriented Approach. Academic Press, New
York, NY, 2nd edition, 1979.

E. R. Berndt. The Practice of Econometrics. Addison-Wesley, New York, NY, 1991.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996a.

L. Breiman. Stacked regressions. Machine Learning, 24:49–64, 1996b.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

H. Chipman and R. McCulloch. BayesTree: Bayesian Methods for Tree Based Models, 2009. URL
http://CRAN.R-project.org/package=BayesTree. R package version 0.3-1.

H. A. Chipman, E. I. George, and R. E. McCulloch. BART: Bayesian additive regression trees.
Annals of Applied Statistics, accepted, 2010.

16

http://biostats.bepress.com/ucbbiostat/paper266



S. Chu. Pricing the C’s of diamond stones. Journal of Statistical Education, 9(2), 2001.

W. S. Cleveland, E. Groose, and W. M. Shyu. Local regression models. In J. M. Chambers and
T. Hastie, editors, Statistical Models in S, chapter 8. Wadsworth & Brooks/Cole, 1992.

D. Cook. Regression Graphics: Ideas for Studying Regression Through Graphics. Wiley, New York,
NY, 1998.

D. Cook and S. Weisberg. An Introduction to Regression Graphics. Wiley, New York, NY, 1994.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. e1071: Misc Functions of
the Department of Statistics (e1071), TU Wien, 2009. URL http://CRAN.R-project.org/

package=e1071. R package version 1.5-22.

S. Dudoit and M. J. van der Laan. Asymptotics of cross-validated risk estimation in estimator
selection and performance assessment. Statistical Methodology, 2:131–154, 2005.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1), 2010a.

J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and elastic-net regularized generalized
linear models, 2010b. URL http://CRAN.R-project.org/package=glmnet. R package version
1.1-5.

J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19(1):1–141, 1991.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189–1232, 2001.

S. Geisser. The predictive sample reuse method with applications. Journal of the American Sta-
tistical Association, 70(350):320–328, 1975.

A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution
for logistic and other regression models. Annals of Applied Statistics, 2(3):1360–1383, 2009.

A. Gelman, Y.-S. Su, M. Yajima, J. Hill, M. G. Pittau, J. Kerman, and T. Zheng. arm: Data Anal-
ysis Using Regression and Multilevel/Hierarchical Models, 2010. URL http://CRAN.R-project.

org/package=arm. R package version 1.3-02.

F. E. Harrell, Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic
Regression, and Survival Analysis. Springer-Verlag, New York, NY, 2001.

T. Hastie. Generalized additive models. In J. M. Chambers and T. Hastie, editors, Statistical
Models in S, chapter 7. Wadsworth & Brooks/Cole, 1992.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.

D. Kibler, D. aha, and M. K. Albert. Instance-based prediction of real-valued attributes. Compu-
tational Intelligence, 5:51, 1989.

C. Kooperberg. polspline: Polynomial spline routines, 2009. URL http://CRAN.R-project.org/

package=polspline. R package version 1.1.4.

17

Hosted by The Berkeley Electronic Press



M. LeBlanc and R. Tibshirani. Combining estimates in regression and classification. Journal of
the American Statistical Association, 91:1641–1650, 1996.

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002.
URL http://CRAN.R-project.org/package=randomForest.

Z. Liu and T. Stengos. Non-linearities in cross country growth regressions: A semiparametric
approach. Journal of Applied Econometrics, 14:527–538, 1999.

R. Neugebauer and J. Bullard. DSA: Data-Adaptive Estimation with Cross-Validation and the
D/S/A Algorithm, 2009. URL http://www.stat.berkeley.edu/~laan/Software/. R package
version 3.1.3.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998. URL http://archive.ics.uci.edu/ml/.

K. Penrose, A. Nelson, and A. Fisher. Generalized body composition prediction equation for men
using simple measurement techniques. Medicine and Science in Sports and Exercise, 17:189,
1985.

A. Peters and T. Hothorn. ipred: Improved Predictors, 2009. URL http://CRAN.R-project.org/

package=ipred. R package version 0.8-8.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2010. URL http://www.R-project.org.

G. Ridgeway. gbm: Generalized Boosted Regression Models, 2007. R package version 1.6-3.

B. Rosner. Fundamentals of Biostatistics. Duxbury, Pacific Grove, CA, 5th edition, 1999.

D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw,
A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R.
Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209,
2002.

S. E. Sinisi and M. J. van der Laan. Deletion/Substitution/Addition algorithm in learning with
applications in genomics. Statistical Applications in Genetics and Molecular Biology, 3(1):Article
18, 2004.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal
Statistical Society, Series B, 36(2):111–147, 1974.

M. J. van der Laan and S. Dudoit. Unified cross-validation methodology for selection among
estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle in-
equalities and examples. Technical Report 130, Division of Biostatistics, University of California,
Berkeley, 2003. URL http://www.bepress.com/ucbbiostat/paper130/.

M. J. van der Laan, E. C. Polley, and A. E. Hubbard. Super learner. Statistical Applications in
Genetics and Molecular Biology, 6(25):Article 25, 2007.

18

http://biostats.bepress.com/ucbbiostat/paper266



A.W. van der Vaart, S. Dudoit, and M.J. van der Laan. Oracle inequalities for multi-fold cross
vaidation. Statistics and Decisions, 24(3):351–371, 2006.

L. J. van’t Veer, H. Dal, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse,
K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts,
P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome
of breast cancer. Nature, 415:530–536, 2002.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth
edition, 2002.

D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

19

Hosted by The Berkeley Electronic Press


	text.pdf.1272927655.titlepage.pdf.yb5bf
	UC-1269.pdf

